

INTRODUCTION TO THE TOTAL CONCEPT

Total Concept meeting 24-25th of April 2014, Gothenburg

Mari-Liis Maripuu, PhD

CIT Energy Management AB

Content of the presentation

- Background and motivation
- Fundamentals of the Total Concept method
- Reference projects
- The economic principles of the Total Concept method
- Carrying out different stages in the Total Concept method

Non-residential building sector

- Business relationship between property owners/managers and tenants
- A need to well-manage, properly maintain and continually refurbish a building
- To keep running costs at a competitive level
- The demands made by society for high energy efficiency will become stricter

The prerequisites for energy investments

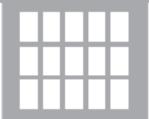
- The investments deemed necessary to carry out the required measures must be profitable
- The assessment of the necessary investments and the future annual savings must be reliable

The prerequisites for improving energy efficiency

 The quality of the building and its function is maintained or improved

The aim is to get the greatest possible savings using

the allocated sources



Total Concept (TC) method

A working method for improving energy efficiency

- Refined systematic approach
- Core aim: Forming a package of measures that together meets the client's profitability requirements
- Decrease in the energy use up to 50% and even more...
- Requires careful analysis and implementation
- Some guidelines for implementation have been developed

Profitability assesment in the TC method

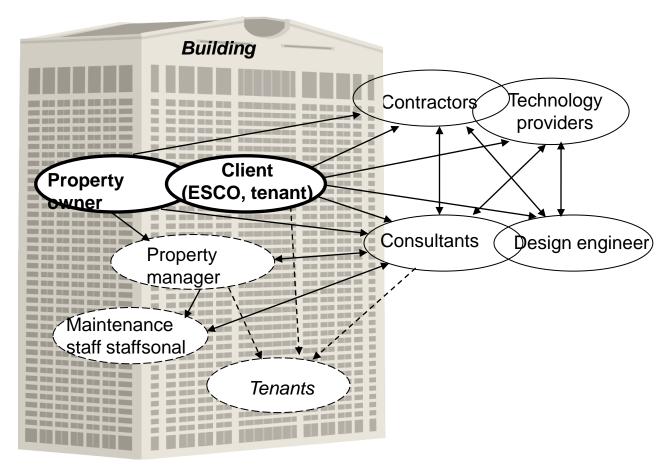
- Based on internal rate of return method
- The actual yields the investment creates gives the internal rate of return
- Comparison made with the property company's profitability requirements
- Future relative price change of energy is taken into account
- Economic lifetime of investment is considered

Total Concept method

Step 1: Create the action package

Analyses of the building > Identification of energy saving measures > Creation of a profitable action package

Step 2: Carry out the measures


All the measures in the ation package are planned, designed and constructed. A careful functional performance checking is carried out.

Step 3: Follow up

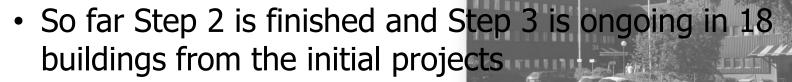
The energy use is measured after the action package has been carried out. The results are used when checking the profitability results

Different parties involved in a TC project interact

First projects initiated 2007

7 offices

5 hospitals


7 schools

3 universities

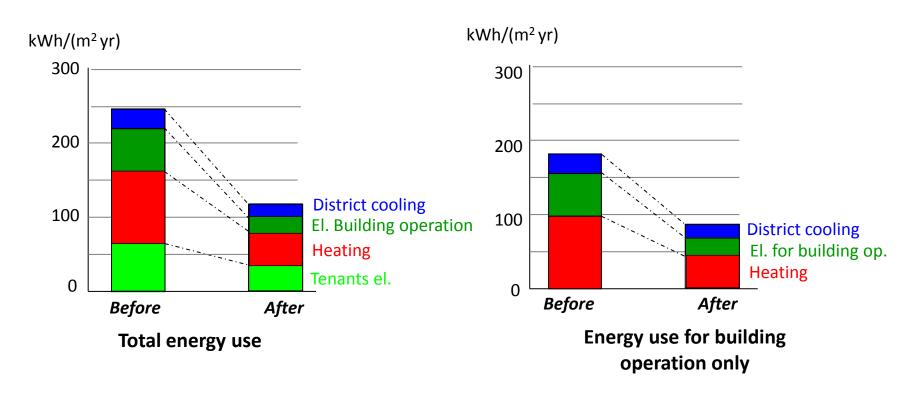
3 stations

1 museum

1 airport building

 A number of additional TC projects are ongoing both inside and outside BELOK group

Getholmen Stockholm, Skärholmen Office building 8.460 m² Built 1975



No	Energy saving measure	Investment	Saving
		[kSEK]	[kSEK/yr]
1	New communal lighting	35	14
2	Reduced basic heat load	35	7
3	Improved roof insulation	40	6
4	Introduction of night cooling	8	1
5	New ventilation system	270	21
6	New windows	120	3
	Summa	508	52

Calculated profitability in Step 1 was ~7 % internal rate of return for the action package Actual profitability after Step 3 was ~ 13 %

Actual results from Getholmen (measured during 1 year)

Decrease in energy use ca 50 %, decrease in cost for energy ca 580 kSEK

Before

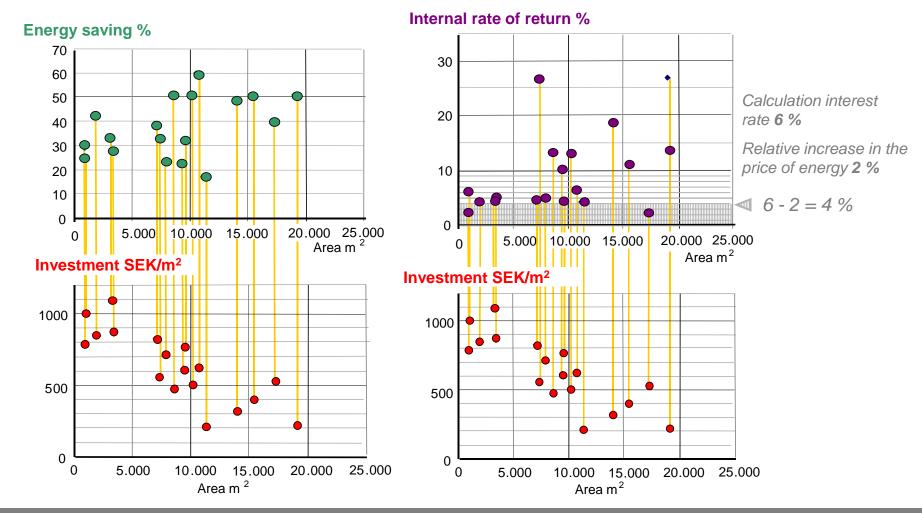
Pennfläktaren Stockholm, Vasagatan Office and restaurants, 12 600m² Built 1975, renovated 2008-2010

Energy use [kWh/m²]	2006 Before action package	2011–2012 After action package	
Heat energy	122	69	
Electricity for building operation	55	36	
Cooling	110	19	
Total	287	124	

Actual profitability after Step 3 was ~ 15 % Decrease in energy use ca 55 %

After

Hägern mindre 7 Stockholm, Drottninggatan Offices and shops, 17 200m² Built 1970, BTC project 2010-2011



Energy use [kWh/m²]	2006 Before action package	2012 After action package	
Heat energy	130	56	
Electricity for building operation	43	25	
Cooling	18	18	
Total	191	99	

Actual profitability after Step 3 was ~ 12 %

Decrease in energy use ca 50 %

Cost for carrying out a TC project

Identifying energy saving measures

Investment cost calculations

Energy calculations

Design work

Carrying out the action package

Functional perfomance checks

ca 4 % (200-350 h)

ca 4 %

ca 90 %

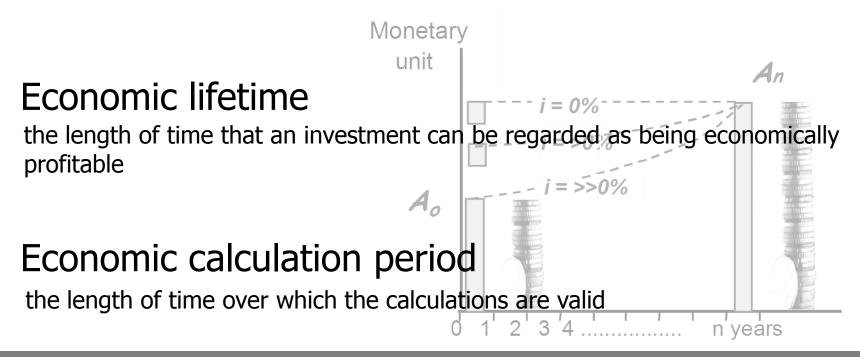
ca 2 %

Total 100 %

The economic principles of the Total Concept method

Terms used in the profitability calculations

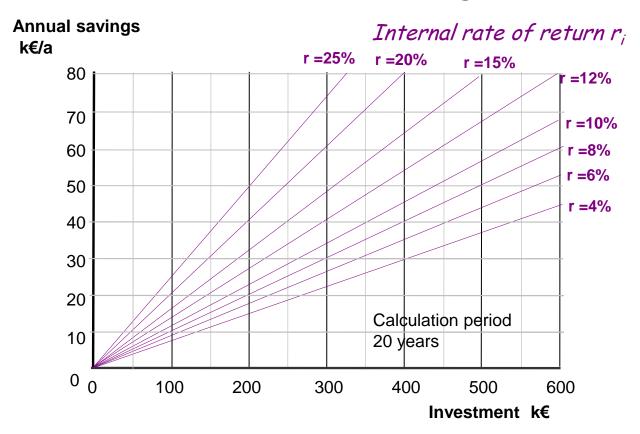
Interest rate used in the calculations



Concepts of time in profitability calculations

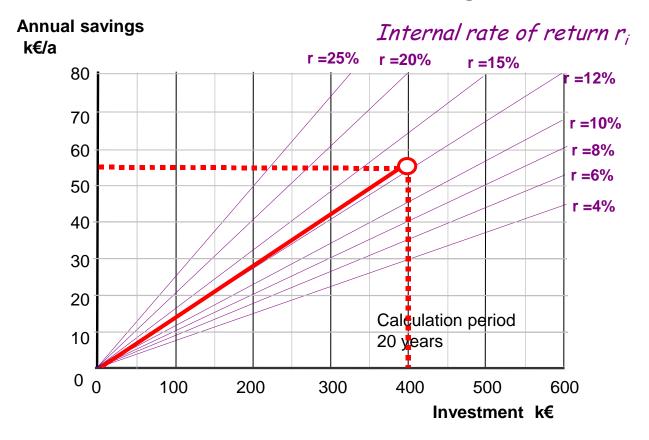
Technical lifetime

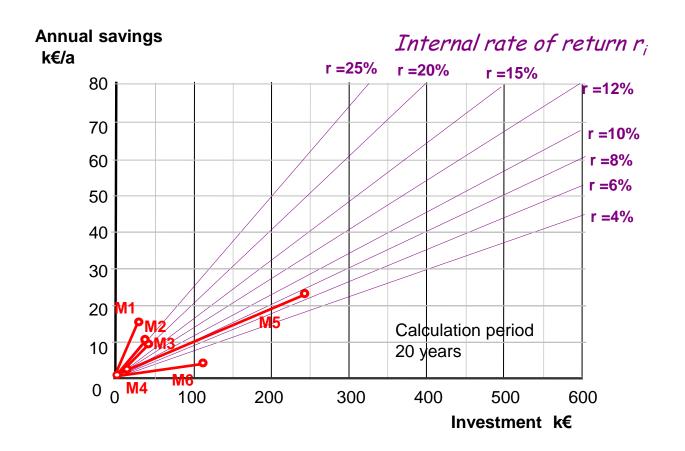
the length of time that an investment can be regarded as technically useful


Examples of economic lifetimes

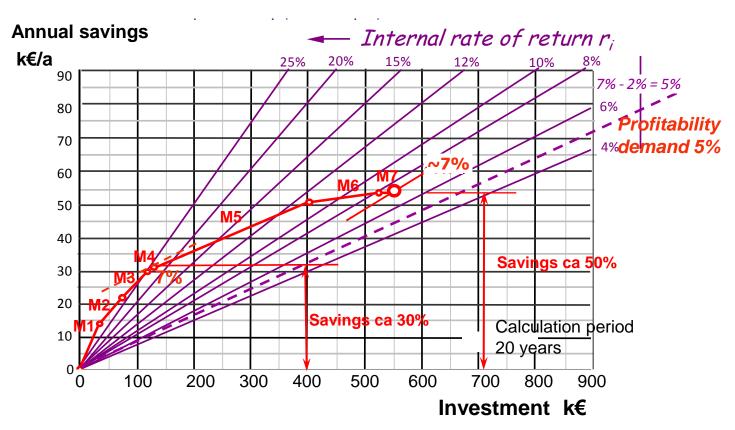
	Economic lifetime [years]		
	Reference		
	projects	CEN 15459	2006/32/EC
Measure	(Sweden)		
Facade insulation	40	-	25 – 30
Roof insulation	40	-	25
Foundations insulation	40	-	25
AHU with heat exchanger	20	15 – 20	17 – 20
Energy-efficient windows	40	-	30
Demand controlled ventilation	15	15	15
Individual domestic hot water	15	10	-
metering			
Solar heat	20	15 – 25	20
Solar cells	20	-	23
Tighter building envelope	40	-	5
Extract air heat pump	15	15 – 20	15
Better control of heating system	15	15 – 25	10
Replacement of domestic hot	15	-	15
water fittings			
Energy-efficient lighting	15	-	10 – 15
Property measures (lighting and SFP)	15	-	-

Internal rate of return method


Internal rate of return diagram

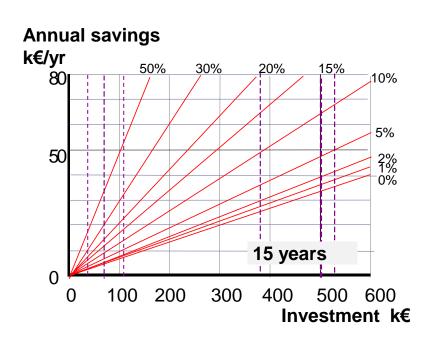

Internal rate of return method

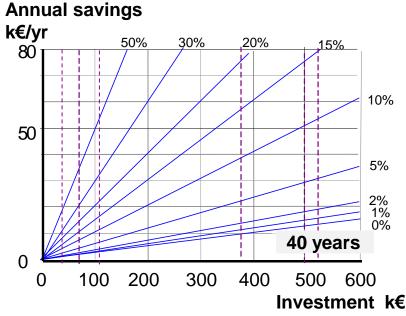
Internal rate of return diagram



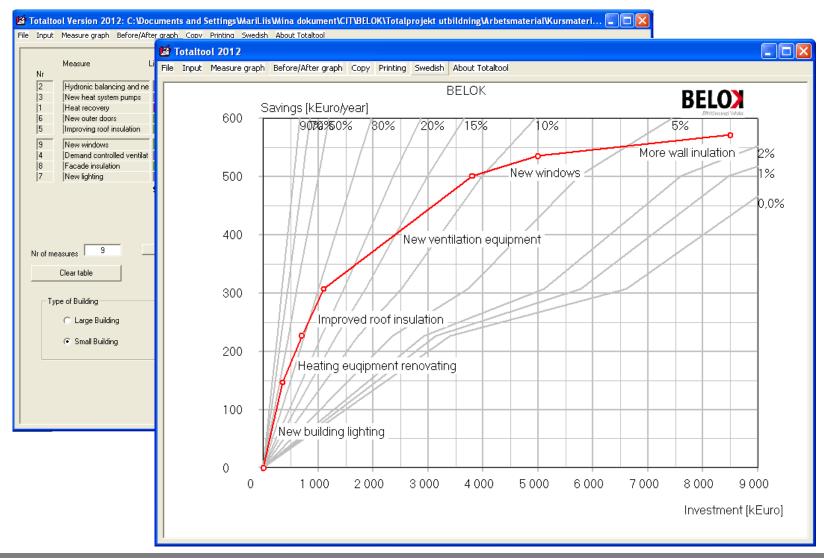
The action package in the internal rate of return diagram

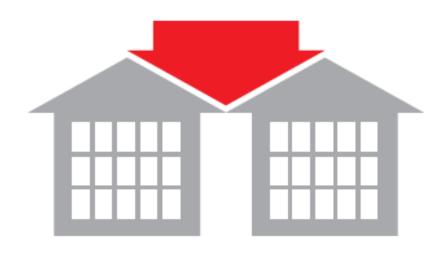
The action package in the internal rate of return diagram




The most profitable measures make up for the investments that, on their own, would not have been profitable at the same time as the action package is still profitable...

Different economic calculation periods


Internal rate of return diagram



BELOK Totaltool

Carrying out different stages in the Total Concept method

Total Concept method

STEP 1

Creating the action package

Information gathering and compiling data

Energy audit and identification of measures

Energy calculations

Investment cost estimations

Profitability calculations and the creation of an action package

Reporting and presentation of proposals

STEP 2

Carrying out the measures

Designing the measures

Construction work and installations

Functional performance checks

STEP 3

Following up

Measuring energy use after renovation

Checking profitability results

Total Concept method

STEP 1

Creating the action package

Information gathering and compiling data

Energy audit and identification of measures

Energy calculations

Investment cost estimations

Profitability calculations and the creation of an action package

Reporting and presentation of proposals

STEP 2

Carrying out the measures

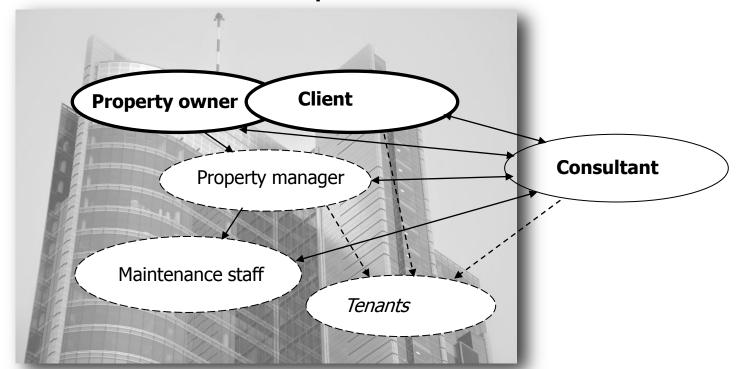
Designing the measures

Construction work and installations

Functional performance checks

STEP 3

Following up


Measuring energy use after renovation

Checking profitability results

Step 1: Creating the action package

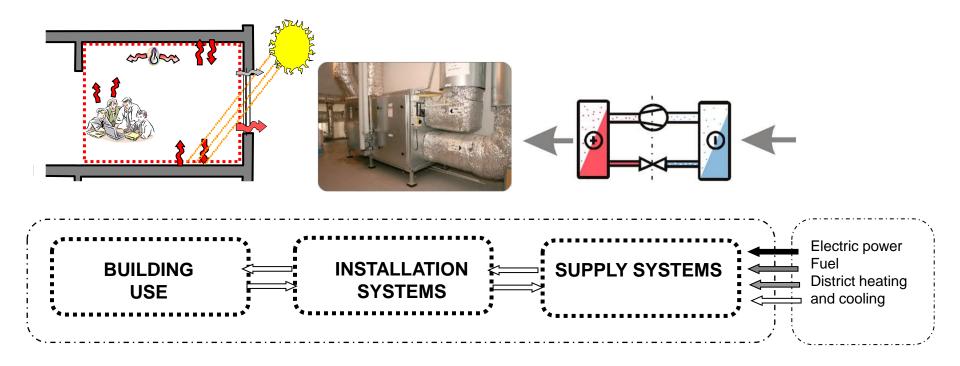
Cooperation between the **energy consultant**, property owner, property manager and maintenance personell

Tasks in Step 1

- Gathering of basic information about the building and compiling technical data
 - ✓ The building and how the building is used
 - ✓ Indoor climate requirements
 - ✓ The energy use
 - ✓ The technical systems

Tasks in Step 1

 Gathering of basic information about the building and compiling technical data


Energy audit and identification of energy saving

measures

Basic approach

- Building as a whole approach
- Building use set the demands/requirements that must be met by the technical systems

Tasks in Step 1

 Gathering of basic information about the building and compiling technical data

Energy audit and identification of energy saving

measures

Energy calculations

Energy calculations

Energy saving measures

1.

2

Savings are only results of the measures themselves, no influence on other systems

e.g. heat recovery system in the ventilation system

In addition to the direct savings, also have indirect effects on the energy use of other systems

e.g. replacing windows, changing to energy efficient lighting, rebuilding from CAV to VAV system

Energy calculations

- The building is simulated with a validated energy simulation software
- Calculations are based on the building's actual condition:
 current layout and operation
- The energy saving measures are simulated step by step to take into account their combined effects

It is important to have correct input data...

Tasks in Step 1

 Gathering of basic information about the building and compiling technical data

Energy audit and identification of energy saving

measures

Energy calculations

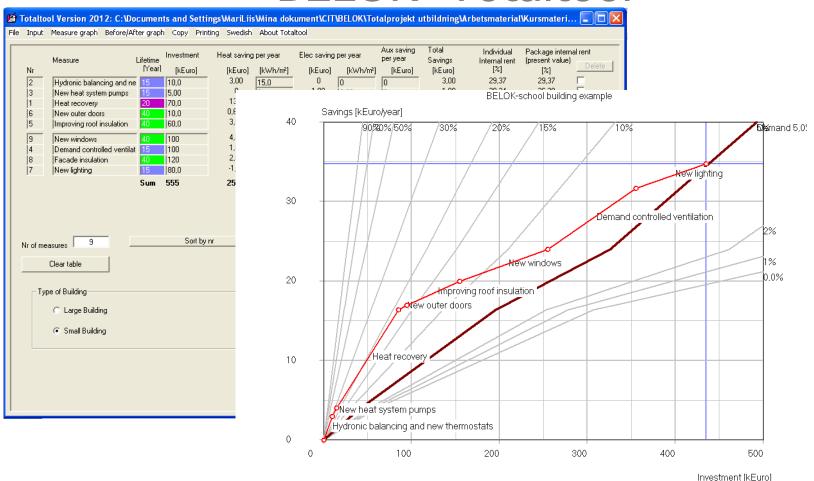
Investment cost estimations

Investment cost calculations

- The cost of each measure is calculated
- The simultaneous implementation of the different measures is taken into account
- The property owner/client who decides the conditions for the investment cost calculation
- Only costs related to enery efficiency improvement should be included

Tasks in Step 1

- Gathering of basic information about the building and compiling technical data
- Energy audit and identification of energy saving measures
- Energy calculations
- Investment cost estimations
- Profitability calculations and the creation of an action package



Profitability calculation

Identified measure (M)	Invest. cost k€	Calcu- lation period yrs	Heat energy saving kWh/m²·yr	Heat energy saving k€/yr	Electrical energy saving kWh/m²·yr	Electrical energy saving k€/yr	Other savings k€/yr	Savings in total k€/yr
M1. Ventilation heat recovery	70	20	65	13	-2	-1	0	12
M 2. Hydronic balancing and new thermostats	10	15	15	3	0	0	0	3
M3: New heat system pumps	5	15	0	0	3	1	0	1
M4: DCV system	100	15	5	1	20	7	-0,5	7,5
M5: Improved roof insulation	60	40	15	3	0	0	0	3
M 6: New outer doors	10	40	3	0,5	0	0	0	0,5
M 7: New lighting	80	15	-5	-1	10	3,5	0,5	3
M8: Facade insulation	120	40	10	2	0	0	0	2
M9: New windows	100	40	20	4	0	0	0	4

Forming an action package with BELOK Totaltool

Tasks in Step 1

- Gathering of basic information about the building and compiling technical data
- Energy audit and identification of energy saving measures
- Energy calculations
- Investment cost estimations
- Profitability calculations and the creation of an action package
- Reporting and presentation of proposals for measures to be carried out

Results from Step 1...

... forms the basis for the investment decision

... forms the basis for the design in Step 2

Included to the Step 1 report:

- Input data in the form of technical details about the building, energy statistics, input data for the feasibility calculations
- A detailed description of the measures
- Calculated energy and investment cost savings for each measure in the package
- Final results of profitability calculations: feasibility of the action package and the energy use before and after

Total Concept method

STEP 1

Creating the action package

Information gathering and compiling data

Energy audit and identification of measures

Energy calculations

Investment cost estimations

Profitability calculations and the creation of an action package

Reporting and presentation of proposals

STEP 2

Carrying out the measures

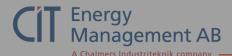
Designing the measures

Construction work and installations

Functional performance checks

STEP 3

Following up


Measuring energy use after renovation

Checking profitability results

Step 2: Carrying out the measures

- The measures in the action package is carried out in their entirety
- Step 2 is based on careful tendering, design work and construction work
- How the implementation affect the tenats and users?
- Clear requirements need to be stipulated when engaging the design engineer and contractor
- Functional performance checks and final inspection important
- Engagement needed from the maitenance personell and property managers

Total Concept method

STEP 1

Creating the action package

Information gathering and compiling data

Energy audit and identification of measures

Energy calculations

Investment cost estimations

Profitability calculations and the creation of an action package

Reporting and presentation of proposals

STEP 2

Carrying out the measures

Designing the measures

Construction work and installations

Functional performance checks

STEP 3

Following up

Measuring energy use after renovation

Checking profitability results

Step 3: Following up

Aims to follow up the energy use and check the actual profitability of the action package

Main Tasks

- Measuring energy use after renovation on monthly basis during one year
- Checking profitability results

Planning of Step 3 should begin already in Step 2...

Questions?